Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2305757

ABSTRACT

Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibody Formation , Histocompatibility Antigens Class I , HLA Antigens/genetics , Histocompatibility Antigens , CD8-Positive T-Lymphocytes , Peptides , Histocompatibility Antigens Class II
3.
Hum Genet ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2253915

ABSTRACT

Rapid advancements of genome sequencing (GS) technologies have enhanced our understanding of the relationship between genes and human disease. To incorporate genomic information into the practice of medicine, new processes for the analysis, reporting, and communication of GS data are needed. Blood samples were collected from adults with a PCR-confirmed SARS-CoV-2 (COVID-19) diagnosis (target N = 1500). GS was performed. Data were filtered and analyzed using custom pipelines and gene panels. We developed unique patient-facing materials, including an online intake survey, group counseling presentation, and consultation letters in addition to a comprehensive GS report. The final report includes results generated from GS data: (1) monogenic disease risks; (2) carrier status; (3) pharmacogenomic variants; (4) polygenic risk scores for common conditions; (5) HLA genotype; (6) genetic ancestry; (7) blood group; and, (8) COVID-19 viral lineage. Participants complete pre-test genetic counseling and confirm preferences for secondary findings before receiving results. Counseling and referrals are initiated for clinically significant findings. We developed a genetic counseling, reporting, and return of results framework that integrates GS information across multiple areas of human health, presenting possibilities for the clinical application of comprehensive GS data in healthy individuals.

4.
Curr Protoc ; 2(10): e534, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2059363

ABSTRACT

Genome sequencing holds the promise for great public health benefits. It is currently being used in the context of rare disease diagnosis and novel gene identification, but also has the potential to identify genetic disease risk factors in healthy individuals. Genome sequencing technologies are currently being used to identify genetic factors that may influence variability in symptom severity and immune response among patients infected by SARS-CoV-2. The GENCOV study aims to look at the relationship between genetic, serological, and biochemical factors and variability of SARS-CoV-2 symptom severity, and to evaluate the utility of returning genome screening results to study participants. Study participants select which results they wish to receive with a decision aid. Medically actionable information for diagnosis, disease risk estimation, disease prevention, and patient management are provided in a comprehensive genome report. Using a combination of bioinformatics software and custom tools, this article describes a pipeline for the analysis and reporting of genetic results to individuals with COVID-19, including HLA genotyping, large-scale continental ancestry estimation, and pharmacogenomic analysis to determine metabolizer status and drug response. In addition, this pipeline includes reporting of medically actionable conditions from comprehensive gene panels for Cardiology, Neurology, Metabolism, Hereditary Cancer, and Hereditary Kidney, and carrier screening for reproductive planning. Incorporated into the genome report are polygenic risk scores for six diseases-coronary artery disease; atrial fibrillation; type-2 diabetes; and breast, prostate, and colon cancer-as well as blood group genotyping analysis for ABO and Rh blood types and genotyping for other antigens of clinical relevance. The genome report summarizes the findings of these analyses in a way that extensively communicates clinically relevant results to patients and their physicians. © 2022 Wiley Periodicals LLC. Basic Protocol 1: HLA genotyping and disease association Basic Protocol 2: Large-scale continental ancestry estimation Basic Protocol 3: Dosage recommendations for pharmacogenomic gene variants associated with drug response Support Protocol: System setup.


Subject(s)
Blood Group Antigens , COVID-19 , COVID-19/genetics , Computational Biology/methods , Genomics , Humans , Male , SARS-CoV-2/genetics
5.
BMJ Open ; 11(9): e052842, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1448019

ABSTRACT

INTRODUCTION: There is considerable variability in symptoms and severity of COVID-19 among patients infected by the SARS-CoV-2 virus. Linking host and virus genome sequence information to antibody response and biological information may identify patient or viral characteristics associated with poor and favourable outcomes. This study aims to (1) identify characteristics of the antibody response that result in maintained immune response and better outcomes, (2) determine the impact of genetic differences on infection severity and immune response, (3) determine the impact of viral lineage on antibody response and patient outcomes and (4) evaluate patient-reported outcomes of receiving host genome, antibody and viral lineage results. METHODS AND ANALYSIS: A prospective, observational cohort study is being conducted among adult patients with COVID-19 in the Greater Toronto Area. Blood samples are collected at baseline (during infection) and 1, 6 and 12 months after diagnosis. Serial antibody titres, isotype, antigen target and viral neutralisation will be assessed. Clinical data will be collected from chart reviews and patient surveys. Host genomes and T-cell and B-cell receptors will be sequenced. Viral genomes will be sequenced to identify viral lineage. Regression models will be used to test associations between antibody response, physiological response, genetic markers and patient outcomes. Pathogenic genomic variants related to disease severity, or negative outcomes will be identified and genome wide association will be conducted. Immune repertoire diversity during infection will be correlated with severity of COVID-19 symptoms and human leucocyte antigen-type associated with SARS-CoV-2 infection. Participants can learn their genome sequencing, antibody and viral sequencing results; patient-reported outcomes of receiving this information will be assessed through surveys and qualitative interviews. ETHICS AND DISSEMINATION: This study was approved by Clinical Trials Ontario Streamlined Ethics Review System (CTO Project ID: 3302) and the research ethics boards at participating hospitals. Study findings will be disseminated through peer-reviewed publications, conference presentations and end-users.


Subject(s)
COVID-19 , Genome-Wide Association Study , Humans , Observational Studies as Topic , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL